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Abstract. We extract the matrix elements of four-quark operators OL,S relevant to the Bs and B̄s life
time difference from QCD sum rules. We find that the vacuum saturation approximation works reasonably
well, i.e., within 10%. We discuss the implications of our results and compare them with a recent lattice
QCD determination.

1 Introduction

Recently, results on CP violation in Bd–B̄d mixing have
been reported by the BaBar and Belle Collaborations [1]
at the ICHEP2000 Conference. More experiments on B
physics have been planned at present and future B fac-
tories [2]. Theoretical efforts to improve predictions and
reduce uncertainties are expected and needed. It is well
known that mixing in neutral B meson systems provides
a good place to examine CP violation as well as flavor
physics in the standard model and beyond. For example,
the mass difference between the mass eigenstates of the
neutral Bd meson, ∆MBd

, gives an important constraint
on the CKMmatrix element Vtd and gives a first indication
of the large mass of the top quark. Similarly, the mass dif-
ference between the mass eigenstates of the neutral Bs me-
son, ∆MBs

, which will be precisely measured in the near
future would give a valuable constraint on the CKM ma-
trix element Vts. Another important observable for mixing
in neutral B meson systems is the life time difference be-
tween the mass eigenstates of the neutral B mesons, ∆ΓBd

or ∆ΓBs . The ratio |Vts/Vtd|2 can be extracted from the
measurement of ∆ΓBs

[3]. The width difference of the Bd

mesons is CKM suppressed and consequently not easy to
be observed. In contrast, for Bs mesons the width differ-
ence is large enough to be measured [4] and has recently
been measured [5] with low statistics. Hopefully, it will be
measured with high statistics in the near future.

As usual, the light BL
s and heavy BH

s mass eigenstates
are defined by

|BL,H
s 〉 = p|B0

s 〉 ± q|B̄0
s 〉,

where |B0
s 〉 and |B̄0

s 〉 are the flavor eigenstates. The mass
difference and the width difference between the physical
states are given by

∆m ≡ MH −ML, ∆Γ ≡ ΓH − ΓL.

Because |Γ12| � |M12| for Bs mesons [6], to leading order
in |Γ12/M12|,∆mB = 2|M12|, ∆ΓB = 2�(M12Γ

∗
12)/|M12|.

Neglecting very small CP violating corrections, the width
difference for Bs mesons in SM has been given [6,7]:

(
∆Γ

Γ

)
Bs

=
(

fBs

210MeV

)2

× [0.006B(mb) + 0.150BS(mb)− 0.063] , (1)

where fBs is the decay constant of Bs, and B and BS are
the bag parameters related to the four-quark operators
OL and OS (see below). These hadronic quantities need to
be calculated by non-perturbative methods such as lattice
methods, QCD sum rules, the Bethe–Salpeter approach,
etc.

Similar quantities related to B0
d–B̄

0
d mixing have been

estimated by Narison et al. within the traditional QCD
sum rules approach [8] at order αs. Their conclusion is
that the vacuum saturation values BB 	 BB∗ 	 1 are sat-
isfied within 15%. Their sum rules are constructed through
two-point correlation functions and depend on some phe-
nomenological assumptions. In this letter we shall calcu-
late the matrix elements of four-quark operators relevant
to the Bs meson life time difference through QCD sum
rules in HQET. The sum rules are constructed with three-
point correlation functions. Our calculation is carried out
at the leading order in the 1/mb expansion in HQET for
simplicity. In [8] the effects of condensates are absorbed
like other factorizable corrections into the contribution to
fB and the available result of [9] (though not explicitly
stated) has been used as the effects are small compared
to the perturbative corrections. In our sum rules the non-
perturbative contributions of the condensates are explic-
itly included and the numerical results confirm the small-
ness of these corrections (see below).
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2 Theoretical formalism

We employ the following three-point Green’s function:

ΓO(ω, ω′)

= i2
∫

dxdyeik
′·x+ik·y

×〈0|T [s̄(x)γ5h
(b)
v (x)]OL,S(0)[s̄(y)γ5h

(b)
v (y)]|0〉, (2)

where ω = v · k, ω′ = v · k′; h(b)
v is the b-quark field in

the HQET with velocity v. OL,S denote the color-singlet
four-quark operators. They are

OL = b̄γµ(1− γ5)sb̄γµ(1− γ5)s, (3)
OS = b̄(1− γ5)sb̄(1− γ5)s. (4)

In terms of the hadronic expression, the correlator in (2)
reads

ΓO(ω, ω′) =
F 2

Bs

4
〈B̄s|QL,S |Bs〉

(Λ̄− ω)(Λ̄− ω′)
+ resonances, (5)

where Λ̄ = mB −mb and FBs
is the Bs decay constant in

the leading order of the heavy quark expansion defined as

〈0|s̄(0)γ5h
(b)
v (0)|Bs〉 = −i√mQFBs

. (6)

Note that fBs
in (1) is defined by

〈0|s̄γµγ5b|B0
s 〉 = −ifBsp

µ. (7)

In order to eliminate the contribution from the non-
diagonal single pole terms and suppress the continuum
contribution in (5), we perform a double Borel transfor-
mation on the correlator. This transformation is defined
as

B̂ = lim
−ω→∞
n→∞

τ̃≡ −ω
n fixed

lim
−ω′→∞
m→∞

τ̃ ′≡ −ω′
m fixed

(−ω)n+1

n!

(
d
dω

)n

× (−ω′)m+1

m!

(
d
dω′

)m

. (8)

There are two Borel parameters, τ̃ and τ̃ ′, which appear
symmetrically, so τ̃ = τ̃ ′ = 2T are taken in the following
analysis.

On the other hand, the correlator can be calculated at
the quark gluon level. For example, for OL we may rewrite
the right hand side of (2) as

−2
∫

dxdyeik
′·x+ik·y

{
− Tr[γ5 · iSmi

b (x) · γµ(1− γ5)

· iSin
s (−y) · γ5iS

nj
b (y) · γµ(1− γ5) · iSjm

s (−x)]
+Tr[iSim

s (−x)] · γ5 · iSmi
b (x) · γµ(1− γ5)]

· Tr[iSjn
s (−y)] · γ5 · iSnj

b (y) · γµ(1− γ5)]
}
, (9)

where iSjn
s (x) is the full strange quark propagator with

both perturbative term and condensates; i, j etc. are color

(a)

x
0

y

(b) (c) (d)

(e) (f) (g)

 Fig. 1a–g. Dominant non-vanishing Feynman diagrams for
Γ O(ω, ω′)

indices. iSnj
b (x) is the leading order heavy quark propaga-

tor, which has a very simple form in coordinate space:

iSij
b (x) = δij

∫ ∞

0
dtδ(x− vt). (10)

Note that the structure of the color flow is quite different
for the two terms in (9). For the perturbative part the
first and second term is proportional to Nc and N2

c , re-
spectively, where Nc = 3 is the QCD color number. In the
limit of Nc → ∞, the second term dominates! As shown
below, the non-factorizable contribution in Figs. 1d,f,g has
a color structure different from the factorizable terms in
Figs. 1a,b,c,e. The condensates up to dimension six are
kept in our calculation. We also expand the strange quark
propagator and keep the perturbative term of order
O(ms). The calculation is standard and we simply present
the final results after performing the double Borel trans-
formation.

3 Duality assumption

We may write the dispersion relation for the three-point
correlator Γ (ω, ω′) as

Π(ω, ω′) =
1
π2

∫ ∞

0
dν

∫ ∞

0
dν′ ImΠ(ν, ν′)

(ν − ω)(ν′ − ω′)
. (11)

In order to subtract the continuum contribution, we have
to invoke the quark–hadron duality assumption and ap-
proximate the continuum by the integral over the pertur-
bative spectral density above a certain energy threshold
ωc.

With the redefinition of the integral variables

ν+ =
ν + ν′

2
,

ν− =
ν − ν′

2
, (12)

the integration becomes
∫ ∞

0
dν

∫ ∞

0
dν′ · · · = 2

∫ ∞

0
dν+

∫ ν+

−ν+

dν− · · · (13)
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It is in ν+ that the quark–hadron duality is assumed [10–
12]:

higher states =
2
π2

∫ ∞

ωc

dν+

∫ ν+

−ν+

dν−
ImΠ(ν, ν′)

(ν − ω)(ν′ − ω′)
.

(14)
This kind of assumption was suggested in calculating the
Isgur–Wise function in [11] and was argued for in [12]. As
pointed out in [10,12], in calculating three-point functions
the duality is valid after integrating the spectral density
over the “off-diagonal” variable ν− = (1/2)(ν − ν′). Such
a duality assumption is favored over the naive one:

higher states =
1
π2

∫ ∞

ωc

dν
∫ ∞

ωc

dν′ ImΠ(ν, ν′)
(ν − ω)(ν′ − ω′)

.

(15)

4 QCD sum rules

The spectral density ρL,S(s1, s2) of the perturbative term
reads

ρL(s1, s2) =
Nc(Nc + 1)

2π4 s1s2[s1s2 +ms(s1 + s2)], (16)

ρS(s1, s2) =
Nc(2Nc − 1)

4π4 s1s2[s1s2 +ms(s1 + s2)]. (17)

The sum rule for 〈B̄s|OL,S |Bs〉 after the inclusion of
the condensates and the integration with the variable ν−
is

F 2
Bs

4
〈B̄s|OL|Bs〉 exp

(
− Λ̄

T

)

=
Nc(Nc + 1)

π4

{∫ ωc

0
dν exp

(
− ν

T

) [
16
15
ν5 +

8
3
msν

4
]

+
4
3
asT

3
(
1− m2

0

64T 2

)
+

1
6
msasT

2 +
a2

s

288

}

−N2
c − 1
256π4 [2T 2〈g2

sG
2〉+ asm

2
0T ], (18)

where as = −(2π)2〈s̄s〉 and we have used the factorization
assumption for the four-quark condensates. Similarly, we
have

F 2
Bs

4
〈B̄s|OS |Bs〉 exp

(
− Λ̄

T

)

=
Nc(2Nc − 1)

2π4

{∫ ωc

0
dν exp

(
− ν

T

) [
16
15
ν5 +

8
3
msν

4
]

+
4
3
asT

3
(
1− m2

0

64T 2

)
+

1
6
msasT

2 +
a2

s

288

}

−N2
c − 1
512π4 [2T 2〈g2

sG
2〉+ asm

2
0T ]. (19)

We want to emphasize that in (18) and (19) the terms
with the color factor Nc(Nc + 1) and Nc(2Nc − 1) come
from the factorizable diagrams in Figs. 1a,b,c,e. The non-
factorizable contribution has a color factor (N2

c − 1)/2

Fig. 2. The dependence of 〈B̄s|OL|Bs〉 on T, ωc

which comes from the summation over the color factor,
Tr [(λa/2)(λa/2)] = (N2

c − 1)/2, in Figs. 1d,f,g. A second
observation is that the factorizable terms are all positive
while the non-factorizable pieces are negative.

Now we turn to the numerical analysis. The decay con-
stant and the binding energy of the Bs meson at the lead-
ing order of the heavy quark expansion can be obtained
from the mass sum rule [13]. We have

F 2
Bs

exp
(

−2 Λ̄
M

)
=

3
8π2

∫ s0

0
dss(s+ 2ms)e−s/M

−〈s̄s〉
(
1− m2

0

4M2

)
. (20)

Note that M = 2T, s0 = 2ωc. We have not included αs
corrections in (20), because they are also neglected in the
sum rule for 〈B̄s|OL,S |Bs〉, (18) and (19). The values of the
parameters are calculated to be FBs = (0.49±0.1)GeV3/2,
Λ̄ = (0.68 ± 0.1)GeV with the threshold s0 to be (2.2 ±
0.3)GeV and the Borel parameterM in the window (0.65–
1.05)GeV [13]. Numerically, we use the following values of
the condensates:

〈s̄s〉 	 −0.8× (0.23GeV)3,

〈g2
sG

2〉 	 0.48GeV4,

〈gs̄σµνG
µνs〉 ≡ m2

0〈s̄s〉,m2
0 	 0.8GeV2. (21)

For the strange quark mass we use ms = 0.15GeV.
In order to minimize the dependence of the parameters

we divide (18) and (19) by (20) to extract the matrix
elements, the variation of which with ωc and T are given in
Figs. 2 and 3. The sum rule window is T = (0.2–0.5)GeV,
which is almost the same as in the two-point correlator
sum rule. We obtain

〈B̄s|OL|Bs〉 = (0.85± 0.20)GeV4, (22)

|〈B̄s|OS |Bs〉| = (0.55± 0.15)GeV4, (23)

where the central value corresponds to T = 0.3GeV and
ωc = 1.1GeV. The uncertainty includes the variation with
T and ωc. The bag parameters B and BS are defined by
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Fig. 3. The variation of |〈B̄s|OS |Bs〉| with T, ωc

Fig. 4. The variation of R with T, ωc

〈B̄s|OL|Bs〉 = 8
3
f2

Bs
M2

Bs
B,

〈B̄s|OS |Bs〉 = −5
3
f2

Bs
M2

Bs

M2
Bs

(m̄b + m̄s)2
BS . (24)

After taking into account the scale dependence (and the
mixing effect of the renormalization) of these four-quark
operators, which is described in [7], we obtain B = 0.82,
Bs = 0.78. To get these numerical results, fBs = FBs/

m
1/2
b = 0.21GeV, MBs = 5.37GeV, m̄b(mb) = 4.4GeV,

m̄s = 0.2GeV are used [7].
The ratio of these two matrix elements is very interest-

ing. We divide (20) by (19) to extract the numerical value
of the ratio. In such a way the dependence on the Borel
parameter and the continuum threshold is minimized as
can be clearly seen in Fig. 4. Within the accuracy of QSR
the curve in Fig. 4 is flat. The ratio is practically the same
in the working region of T and ωc. It reads

R =
|〈B̄s|OS |Bs〉|
〈B̄s|OL|Bs〉 = (0.63± 0.13). (25)

In our numerical calculation, the contribution of the
perturbative term is about 45–65% of the total contribu-
tions in the preferred Borel variable region. We have used

a factorization approximation for the four-quark conden-
sates in the numerical calculations. This may introduce
some uncertainty. We may introduce a scale factor κ to
indicate the deviation from the factorization approxima-
tion as in [14]. In our calculations of the sum rules the
1/Mb corrections in HQET have not been included, which
may bring about a deviation from the numerical results
of the matrix elements. However, for the ratio of the two
matrix elements, we expect little change to the above anal-
ysis. Our numerical results are not sensitive to the mass of
the strange quark. Actually, the effects due to the strange
quark are very small, so that the results for Bs are almost
the same as those for Bd.

We now make a remark on the usual factorization as-
sumption. In our Feynman diagram (Fig. 1) calculations,
the contributions of non-factorizable diagrams are around
−6%,−7% for 〈B̄s|OS |Bs〉 and 〈B̄s|OL|Bs〉 respectively,
which means that the factorization approach works well,
even though our calculations are limited to the leading or-
der in the 1/mb expansion in HQET. That is, the conclu-
sion in [8] remains unchanged when the non-perturbative
condensate contributions are taken into account. If one
considers αs corrections, there is only one non-factorizable
perturbative diagram, in which the gluon line in Fig. 1f is
connected, in the fixed-point gauge in the leading 1/Mb

expansion. However, radiative corrections are generally of
high order in αs/π compared to the leading order, and the
fact is that the perturbative term is about 45–65% of the
whole contribution, so the contribution from the diagram
can be neglected compared to those in Figs. 1d,f,g. The
case here is different from that in the calculation of the
matrix elements of the four-quark operators, relevant to
the life time difference between the heavy mesons, where
the flavor changes by ∆F = 0. In that case, the pertur-
bative contribution vanishes [15], and we cannot predict
naively how large the radiative correction is compared to
the non-perturbative terms.

5 The Bs and B̄s decay width difference

The complete expression for ∆ΓBs with short-distance co-
efficients at NLO in QCD is given by [7]

(
∆Γ

Γ

)
Bs

=
16π2B(Bs → Xeν)

g(z)η̃QCD

f2
Bs
MBs

m3
b

|Vcs|2 (26)

·
(
G(z)

8
3
B +GS(z)

M2
Bs

(m̄b + m̄s)2
5
3
BS +

√
1− 4zδ1/m

)
,

where

G(z) = F (z) + P (z) and GS(z) = −(FS(z) + PS(z)).
(27)

and F , P , FS , PS can be found in [7]. We eliminated the
total decay rate ΓBs in favor of the semileptonic branching
ratio B(Bs → Xeν), as in [6]. This cancels the dependence
of (∆Γ/Γ ) on Vcb and introduces the phase space function

g(z) = 1− 8z + 8z3 − z4 − 12z2 ln z, (28)
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as well as the QCD correction factor [16]

η̃QCD = 1− 2αs(mb)
3π

[(
π2 − 31

4

)
(1− √

z)2 +
3
2

]
. (29)

One can also express the width difference as

∆ΓBs

ΓBs

=
(
τBs∆mBd

mBs

mBd

)(exp.) ∣∣∣∣Vts

Vtd

∣∣∣∣
2

K

·(G(z)−GS(z)R(mb) + δ̃1/m)ξ2, (30)

where

ξ =
fBs

√
B̂Bs

fBd

√
B̂Bd

, (31)

K is (7) in [17],

δ̃1/m = f2
Bs
M2

Bs
δ1/m, (32)

and δ̃1/m represents the 1/mb corrections and can be found
in [6].

It is clear from the above equation that besides the
ratio R of the matrix elements of the four-quark operators,
which are those we have calculated in our paper, we only
use the experimental Bd meson mass difference, which is
known with a tiny error: [18]

(∆mBd
)(exp.) = 0.484(15) ps−1, (33)

and another ratio of the hadronic matrix elements, ξ,
which is rather accurately determined in lattice simula-
tions [19,20].

As is well known, the quantities in (1) are calculated
at the scale O(mb), while our result (25) is calculated at
the hadron scale µhad. Therefore, we have to consider the
renormalization scale dependence of those four-quark op-
erators. The anomalous dimension matrix of these opera-
tors has been given in [7]. Using the anomalous dimension
matrix and following the standard way, we obtain the scale
dependence of R,

R(mb) = 1.69R(µhad) + 0.03, (34)

where R(µhad) is defined by (25). To obtain the numerical
result, mb = 4.8GeV and µhad = 1.0GeV have been used.
It is obvious from (34) that the result heavily depends on
the renormalization scale.

Numerically, we have

∆ΓBs

ΓBs

= [(0.5± 0.1) + (13.8± 2.8)R(mb)

+(15.7± 2.8)(−0.55± 0.17)]× 10−2

= (7.0± 0.8)× 10−2. (35)

Clearly such a life time difference is compatible with the
existing literature. It is interesting to compare our result
to the two recent lattice QCD calculations: ∆ΓBs

/ΓBs
=

(10.7 ± 2.6 ± 1.4 ± 1.7) × 10−2 in [21] and ∆ΓBs/ΓBs =
(4.7 ± 1.5 ± 1.6) × 10−2 in [17]. In (35) the numerical
value of δ̃1/m, which corresponds to the 1/mb correction
in the short-distance expansion of the operator product
Heff(x)Heff(0) [7], has been taken as −0.55 [17]. If it is
taken as −0.30, one has ∆Γ/Γ = 10.9× 10−2, larger than
7.0× 10−2, while in the case of [17], ∆Γ/Γ would remain
in the 10% range with the change from −0.55 to −0.30.
That is, the sensitivity to the final term in (35), i.e., the
1/mb correction, increases in our result. Without a good
control of this correction, a precise determination of the
life time difference is impossible.

6 Conclusion and discussion

In summary, we have calculated the matrix elements of the
four-quark operators relevant to the Bs meson life time
difference with QCD sum rules in HQET. The sum rules
are constructed with three-point correlators and both the
perturbative and non-perturbative contribution are taken
into account. Our result shows that the usual factorization
assumption is indeed a good approximation. The numeri-
cal results show that the sum rules of those operators have
a good platform. The perturbative contribution to sum
rules are about 45–65% of the total contribution. Our re-
sults are not sensitive toms. The life difference ∆ΓBs

/ΓBs

is found to be around (7.0±0.8)×10−2. This result is com-
patible with results predicted by lattice calculations. The
αs corrections have not been taken into account in the sum
rules and they will definitely have effects on the resulting
numerical values. To get a more accurate prediction, the
αs corrections should be taken into account; this is beyond
the content of this letter.
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